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I. Phys. A: Math. Gen. 28 (1995) 1055-1068. Printed in the UK 

Applicability of the Lewis and Aboav-Weaire laws to 2~ and 
3~ cellular structures based on Poisson partitions 

M A Fortes 
Departamento de Engenharia de Materiais, lnstituto Superior Thcnico, 1096 Lisboa Codex, 
Portugal 

Received 24 May 1994. in final form 21 November 1994 

Abstract. Two- and three-dimensional network; of a columnar type are described, wluch m u l t  
from patiitions based on Poisson point distributions. The metric and topological properties of 
such laminated Poisson networks are derived and the applicability of Lewis and Aboav- 
Weaire laws to them is tested. The w Poisson network contains cells with i 2 4 (i is the 
number of sides) and both laws are obeyed. The 3~ Poisson networks are of various types and 
have F > 6 (F is the number of faces i? a cell) and i = 14. In one pMicular type of 3D 
Poisson network the two laws are again exactly obeyed. In another type, the laws show large 
deviations at low F but are asymptotically obeyed when F tends to infinite. 

1. Introduction 

Cellular structures, ranging from soap froths to polycrystals and solid foams, have been 
the subject of much interest in recent years (e.g. Weaire and Rivier 1984, Glazier and 
Weaire 1992, Gibson and Ashby 1988). Attempts have been made to establish the general 
topological and geometrical properties of such structures which may help in explaining 
and predicting their peculiar properties and behaviour. Most studies have concentrted on 
2D cellular structures which may be represented by random planar networks, usually with 
trivalent vertices (i.el three edges at each vertex). Excluding those properties that are a 
direct consequence of Euler’s theorem, the best documented general topological property 
of such ZD networks is the Aboav-Weake law for the average number mi of sides (edges) 
in cells adjacent to cells with i sides (i cells). This quantity is approximately linear in I / i  
in the form (Aboav 1970, 1980, Weaire 1974) 

(1) 

where a is a constant for each network and pz is the second moment of the distribution 
g(i) of the number of sides. The fact that only one parameter, a,  appears in equation (1) is 
a consequence of the following identity, first derived by Weaire (1974), 

(2) 

where i = (i) = 6 is the average value of i in trivalent ZD networks. Equation (1) can be 
predicted from maximum entropy arguments (Peskin ef al 1991) but is, in general, only 
approximate in actual networks. The exact dependence of mi on i was recently derived for 
a few types of random trivalent networks, which shows that the linear relation (1) is indeed 
only approximately obeyed. In the network analysed by Godrkhe et al (1992), i varies 
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imi = (6 - a)i  + 6a + pz 

(imj) = (i’) = (i)’+ pz 
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in the interval [~ ,co] .  An equation for imi was derived which contains a nonlinear extra 
term in (i + l)-'. The family of networks analysed by Le Caer (1991) and Delannay et 
al (1992) depends on a parameter, p .  The networks all have i in the interval [4,8]. The 
Aboav-Weaire law is not exactly obeyed, except for one particular value of the parameter 
p .  This is apparently the only available non-trivial example of network for which the 
Aboav-Weaire law is obeyed exactly. In this paper we give another example for a network 
with i in the interval [4, CO). Exact results of imi in larger intervals of i have also been 
given by Le Caer and Delannay (1993) for 2D networks associated with tilings of triangles; 
again Aboav-Weaire law is only approximately followed. 

There has been some speculation on whether Aboav-Weaire law is applicable to 3D 
random networks (with tetravalent vertices) to describe the correlation between the number 
of faces F in adjacent cells. The 3D form of (1) is 

F m F  = (F - U ) F  + F a  +pz (3) 

where F and pz, respectively, are~the average value and the second moment of the 
distribution of F, and mF is the average number of faces in cells faceadjacent to F 
cells. The dependence on a single parameter a is a consequence of the following identity, 
analogous to equation (2): 

A few examples have been reported (Fortes 1989, 1993) of 3D networks to which (3) is 
approximately applicable, in particular the 3D Voronoi network. But the 3D Aboav-Weaire 
law has not been as thoroughly tested as the 2D version. In this paper we analyse special 
types of 3D tetravalent networks that confirm the applicability of (3). In one case the law 
is exactly followed. 

Another general relation of a different nature that has been claimed to apply to cellular 
structures is the Lewis law (Lewis 1928, 1931). This is an empirical relation which states 
that the average area (volume) of cells is approximately linear in the number of topological 
elements (edges in ZD, faces in 3D). Rivier and Lissowski (1982) have shown that the Lewis 
law can be derived as a consequence of the maximum entropy principle. A similar law, 
known as Desch law (see Rivier 1985), has been suggested for the relation between the 
perimeter (2D) or surface area (3D) and the number of topological neighbours. 

We will check the applicability of the Lewis law to the class of 2D and 3D networks 
that will be analysed in this paper. The law is exactly followed in some networks and 
approximately followed in  others. Interestingly, we find that the Lewis law is exact when 
Aboav-Weaire law is exact. 

2. Description of networks 

The 2D trivalent network (to be termed 2D laminated Poisson network) is generated as 
follows (see figure 1). We take a family of parallel lines in the x direction in the plane. The 
distance between lines does not affect the topological properties of the network although it 
affects the geometry. When representing the networks and also for the purpose of obtaining 
cell areas, we take that distance as uniform (do) as in figure l(a). Each region (or column) 
between successive lines is divided into cells (figure l(b)). The division of a column is 
based on a Poisson point distribution in the x direction: an edge in the y direction is 
taken through each Poisson point (P-point). The distributions in the various columns are 
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Figure 1. Two-dimensional Poisson network. Parallel columns in the x direction (a) x e  divided 
into cells by edges through the points of independent Poisson distributions (b). For a cell 0 of 
height L ,  the lengths L,,  and L,, are the cover lengths in adjacent columns I and 2. Edges e 
and e' are of cells base-adjacent to cell 0. 

independent but all have the same density which we take to be one P-point per unit length. 
The height of a cell, L, is the distance between adjacent P-points (figure l(c)). Its average 
value is then unity. Networks based on Poisson distributions of non-uniform density can 
also be defined and analysed but will not be considered in this paper. 

The 3D tetravalent networks (3D laminated Poisson networks) are generated by a similar 
process (figure 2). We take an arbitrary ZD trivalent network (base network) on the xy 
plane (figure 2(a)) and take vertical (parallel to z) planes through each edge which divide 
the 3D space into prismatic columns. In each column we consider a Poisson distribution 
of unit density in the z direction and divide the column into cells by planes perpendicular 
to z through each P-point (figure 2(b)). The height of a cell, L,  is the distance between 
adjacent P-points in the associated distribution (figure 2(c)). The average cell height is 
unity. Two particular types of these 3D networks will be analysed in detail. One is based on 
the hexagonal network. The other is based on the 2D laminated Poisson network. The first 
will be termed hexagonal laminated Poisson network and the other the doubly kuninated 
Poisson network. 

Figure 2. Three-dimensional Poisson networks. The 3D networks are based on arbitmy planar 
(xy )  networks (a) which define the columnar structure in the L direction (b). The cell in (c) has 
i = 4 and F = 10 and height L .  
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3. Basic equations 

There are various properties of the Poisson distribution that will be used to analyse the 
topological and geometrical properties of the ZD and 3D Poisson networks previously 
described. In this section we give all the relevant equations. Consider a Poisson point 
distribution in a straight line, of unit density. The dishibution can be realized by placing 
M random points on a segment of length M and letting M tend to infinite. The probability 
density g(L) of a Poisson segment of length L is 

(5 )  L p ( L )  =e- 

such that p ( L )  dL is the probability of a segment length in the interval L ,  L + dL (for 
short L ,  dL). Note that the average length, 1, is taken to be unity. If we take n segments 
(adjacent or not) the probability density for the sum, L,, of their lengths is 

If we take an independent segment (not a P-segment) in the distribution, of length Lo, the 
probability that it contains exactly n P-points is 

These probabilities are frequently used to define the Poisson point distribution. 
The expected (or average) number of P-segments in a segment Lo is 

(n)o =LO. (8) 

This result applies even if the origin of LO is at a P-point. Equations (5H8) are standard 
properties of the ID Poisson point distribution. 

In the following we consider a number N of Poisson distributions (numbered 1, . . . , N )  
overlapping another distribution, which we denote by 0-distribution, as in the example of 
figure 3(a). All distributions have unit density. We wish to find the probability density of 
P-segments of length L ,  dL in the &distribution containing nl . . . n N  points of distributions 
1,. . . , N, respectively. The probability density q(L;  nl . . . n N )  is proportional to the product 
p ( L ) P ( n l ,  L )  . . . P(nN, L). Upon normalization we obtain, using (5) and (7), 

L’exp[-(N + 1)Ll (94 
(N + I)’+’ 

I! p(L; nl . . . n ~ )  = p(L, I) = 

where 

The distribution of L is therefore the same for all decompositions of Z in N terms. Therefore 
we write v (L ,  I ) .  

It is easily shown that a given Z can result from N’ decompositions of type (9b) (for 
N = 2, Z = 3, for example, n I = 1, nz = 2 is taken as distinct from nl = 2, n2 = 1). The 
following identities will be useful later: 
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Figure 3. (a) Distributions 1 ,  2, 3 overlapping a reference distribution 0. (b) Segment PP' of 
length L and distribution 0 of Poisson points. Points 91 and Pi define the cover length L ,  in 
0 of segment L. (c) Cover lengths of segment L in two distributions 1 and 2. The two cover 
segments pmiy overlap. The non-overlap length at tke bottom is IQ - c11, 

where the sum is for all the N' decompositions of I and 

= 1  
N' m 

k 0  (N.+ l)'+' 

The fraction, (nl . . . n ~ ) ,  of segments (with any L )  of the &distribution that correspond 
to a particular decomposition nl . . . n ~  (i.e. that contains nl P-points of distribution 1, etc) 
is 

The sum of the quantities (nl . . . n ~ )  for all decompositions of all I s  (in the interval (0, CO)) 

is unity. This is easily proved from identities (10) and (1 1). The average length of segments 
of the 0-distribution with fixed I can be obtained from y ( L ,  I) (equation (90)). The result 
is 

Next we consider a segment of length L randomly located in the 0-distribution and 
of extremities P and P'. This segment can be a Poisson segment of another Poisson 
diswibution. The cover length, L,, of L is defined as the length of the segment POP; 
(figure 3(b)), Po and Pi being the points of the 0-dishbution that immediately follow the 
extremities P and P' of L,  and are outside L. We wish to find the distribution of the cover 
lengths, L,, of segments L such that there are n points-of the 0-distribution in L. We show 
that the probability density of L,, forgiven L and n, is given by 

and is therefore independent of n.  to derive (14) we refer to figure 3(b). The lengths of 
the extreme P-segments are e, l' and the distances between the extreme points P and P' of 
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L to Po and P; are e - b and e - b', respectively. The total length between PO and Po' is 
e + e' + ti. We then have 

L = ei + b + b' 
L, = ei + e  + e'. (15) 

It is necessary that e > b and e' > b'. The interval o f t  for fixed b is then 

b < e < L, - L + b .  (16) 

A cover length in the interval L,, dL, with fixed b and t i  can result from e ,d t  with 
probability p(e) de and e', de' with probability p(Lc - ti - t )  dL,. Then the probability 
density of L, for fixed b and t i  is 

where k is a normalization factor. Note that there is no dependence on b.  The factor k is 
determhed from 

(18) 

leading to the result expressed in equation (14). The probability density x is also 
independent of t i .  

The previous derivation is not applicable for n = 0 (no points inside L) because ei 
cannot be defined. The derivation can easily be modified and leads to the same distribution, 
i.e., to the same x. 

The average value of ( L ,  - L) for fixed L is 2, independent of L,  

((L, - L)) = 2. (1% 

Finally, we consider, for a given segment L, the cover lengths L,,, L ,  in two 
independent Poisson distributions. These cover lengths partly overlap (figure 3(c)). The 
non-overlap length L,o has the average value 2(Ic2 - ell) where the cs are defined in 
figure 3(c). The probability density of ci is exp(-ci). This leads to the value 2 for the 
expected length of non-overlapped regions in the two distributions: 

(L"0) = 2. (20) 

4. Analysis of laminated Poisson networks 

4.1. Distribution of cells in topological classes 

4.1.1. Two-dimensional networks. The number of sides, i ,  of a cell in a 2D Poisson network 
is 

i=4+1 I = n l + n z  (21) 

where itl, n2 are the numbers of additional vertices contributed by the cells in adjacent 
columns (nl = 1 and n2 = 2 for cell 0 in figure l(c)). The fraction, g ( i ) ;  of i cells is then 
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Figure 4. The fraction g(i) of cells with i sides 
in the 20 Poisson network. 

Figure 5. The fraction f (F) of cells with F faces in 30 Poisson 
network based on the hexagonal network. 

the sum of the fractions (nlnz) for all combinations that lead to I = i - 4. The quantity 
(nlnz) is given by (12) with N = 2. Using (IO), we find 

The distribution is plotted in figure 4. Note that the fraction of cells with i sides in a column 
is also g(i). 

The following results can he obtained with the aid of identities given in the appendix: 

M 

c g ( i )  = 1 ( i )  = 6 (i') = 42 p z  = 6. 
i=4 

4.1.2. Three-dimensional networks. In a 3D laminated Poisson network based on a ZD 
network with an arbitrary distribution g ( i )  of the number of edges (i > 3 ) .  the number of 
faces in a cell with an i-base is 

F = ~ i  + 2 + I I = n l t . . . + n i  (24) 

where i is the number of columns adjacent to the column where the cell is located. The 
cell has a number, nk, of additional lateral faces which result from the cells in the adjacent 
k-column (figure Z(c)). 

For fixed i ,  the fraction f i (1 )  of cells with I is obtained by summing the Fractions 
(nl . . .ni) for all combinations compatible with 1. The result is 
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The average number of faces Fi for fixed i is easily found to be 

Pi = 2i + 2. (26) 

The fraction fir of cells with fixed i and F is 

For fixed F the fraction, fF(i), of cells with i-bases is 

Finally the fraction f(F) of F-cells is 

It is possible to calculate k; and ( F z )  with the help of identities given in the appendix: 

F = ( F ) = 1 4  ( F 2 ) = 5 8 + 5 ( i Z )  p2=42+p:) (30) 

where p$) is the second moment for the 2D base network. All 3D Poisson networks have 
F = 14. 

We apply these results to two types of 3D laminated Poisson networks. In the first type 
the 2D base network is the hexagonal network. Then i = 6 in all cells (g(6) = 1). We have 

f (F) =   SF = ~ ( 7 )  ’ ’-* F > 8. (31) 

The distribution is plotted in figure 5. It has k: = 14 and p2 = 42. The fraction of F-cells 
in each column is also f(F). 

The other 3D network is based on the 2D laminated Poisson network. It will be termed 
a doubly laminated Poisson network. The number of faces in a cell is 

F = i 1-2 + I  = 6 +IO + I (32) 

where Io is the number of extra lateral edges in the base and I the number of extra lateral 
faces. The fractions g(i) are given by (22). Using the previous equations we obtain 

F-i-2 

f i F = j ( ? )  -(A) I f 1  r + l  4 G i G F - 2  (33) 
1 i-4 

and for the fraction of F-cells 

F-2 1 F-i-2 

k 4  
f (F)  = ( i)-4 (A) (34) 

The distribution is plotted in figure 6(a). It has = 14 and p~ = 72. 
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Figure 6. 30 doubly laminated Poisson network (a) the hction f ( F )  of cells with F faces; (b) 
the average number oflateral faces, ( i ) F  in cells with fixed F and thequantity ( V ) R  == ( L ~ L I ) F ,  
proportional to the average volume of cells with F faces. 

4.2. Lewis law 

4.2.1. Two-dimenswnal nefworks. In the 2D laminated Poisson network the area of an i cell 
of height L is A = Ldo where do is the width of the columns (or its average value if the 
width is non-uniform). The average L of cells with fixed i is, from (13) with N = 2 and 
I = i - 4 ,  

i - 3  
(L)i = 3. (35) 

The area of i cells is then linear in i and Lewis law is exact. A linear relation in i also 
holds for the average perimeter, (2(L +do)), of the cells. 

The distribution yl(L, i) of lengths, L, of cells with fixed i is given by (9a) with N = 2, 
I = i - 4,  and can also be used to obtain (35). 

4.2.2. Three-dimensional network. In the 3D hexagonal laminated Poisson network the 
volume of a cell of height L is V . =  AoL where AO is the area of the hexagonal base. For 
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fixed F ,  the average height is given by (13), leading to 

Lewis law is again exact. The average surface area of F cells is also linear in F .  The 
distribution p(L, F )  of heights, L,  of cells with fixed F is given by (9a) with N = 6 and 
Z = F - 8 and can also be used to obtain (36). 

In the 3D doubly laminated Poisson network the volume of a-cell is V = &L&. The 
average height Lb of the bases with given 10 = i - 4 is 

and the average height Ll of the cells with given i and given Z = F - i - 2 is 

For fixed F the fraction of cells with i bases, fF(i), is given by (28). The average value 
of LbLl for fixed F is 

This can be written in the form 

(LbLI)F = i ( F  - 1 - ( i ) F )  

where ( i ) ~  is the average value of i for fixed F :  

This quantity is plotted in figure 6@). It is apparent that cells with smaller F have smaller 
i ,  but ( i } ~  is not linear in F .  

Figure 6(b) also shows a plot of the quantity ( V ) F  = (LbLljp, proportional to the 
volume of a cell, as a function of F .  Lewis law is not exactly followed. The deviation 
from linearity (which is related to the nonlinear dependence of ( i ) ~  on F )  is noticeable at 
low F ,  but the linear relation holds for large F .  The best fit straight line depends on the 
interval of F where the fitting is done. For F in the interval [6,50] the best linear relation 
(least-squares fit) is 

(LbLI)F = -1.697 f 0 . 2 8 4 F .  (42) 

Note that the average value of the quantities (LbLI)F for all F is unity. The average surface 
area of cells with fixed F is also not linear in F ;  we have not calculated its variation with 
F .  

4.3. Aboav-Weaire law 
We wish to find the expected number of topological elements (edges in 2D, faces in 3D) in 
cells adjacent to cells with a fixed number, i or F ,  respectively, of topological elements. 
These quantities are mi and mF, respectively. It is more convenient to obtain directly the 
total number of elements in the neighbours, i.e. the quantities imi and FmF. 
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4.3.1. Two-dimensional networks. Consider a cell 0 of length L with i or F elements. 
This cell is in a column 0 and has two adjacent cells in column 0 (base adjacent cells). 
There are also laterally adjacent cells in the columns that are adjacent to column 0. The 
number of Poisson points in these columns that fall within the cell is nk for column k. The 
corresponding number of laterally adjacent cells is then nt + 1 and the cover length  is LcK. 

In the ZD laminated Poisson network there are two adjacent columns with nl , nl points 
inside cell 0, with I = nl +n2 and i = I~+4 (see figure I(c)). The number of edges in the 
(ilk + I) cells of column k is 4(nk + 1) plus the additional edges that result from contact 
with cells in column 0 (type 1 edges) and from contact with cells in the following columns 
which are second neighbour columns relative to column 0 (type 2 edges). The expected 
number of additional edges of type 1 is 2 x 2 (contact with the two bases of cell 0) plus 
the expected number of Poisson points in column 0 in the uncovered lengths L,, - L and 
L,, - L (edges e and e' in figure I@)). Each of these expected numbers is 2 (equation (19)). 
The number of additional edges of type 2 is (Lc l )  + (&) each of which is, from (19) and 
(12), equal to 2 + (I + l ) / 3 .  Finally, the expected number of edges in each base adjacent 
cell is 6, since there is no correlation between the values of i of cells in the same column. 

The final result is obtained by summing all these contributions, each of which is written 
between square brackets: 

imi = [4I+ 81 + [ 2  x 21 + [ 2  x 21 + t2(2 + $(I + I))] + [ 2  x 61 

(43) = (4 + ;)I + 32 + $ ~~ 

or, in terms of i = I +4, 

imi = 14 + yi. (44) 

The Aboav-Weaire law is exactly followed: The value of a in equation (1) is, sinca p~ = 6, 

a = 413. 

4.3.2. Three-dimensional networks. We now treat the 3D laminated Poisson networks based 
on an arbitrary planar network for which the quantities mi are assumed to be known. 
Consider a 3D cell 0 with F faces, height L and a base with i edges. We first find the 
quantity (Fmp)i for fixed i and F .  This is the total number of faces in cells adjacent to F ,  i 
cells. The number of P-points within cell 0 is nk for each of the distributions k(k = 1, . . . , i) 
in the columns adjacent to 0; the number of laterally adjacent cells is n k  -F 1. We introduce 
It = then 

The number of lateral walls in column k is ml with average value mi. Then the total number 
of cells adjacent to cell 0 in column k is (nk + I)(mf + 2)  plus the number of additional 
edges that result from contact with other cells. These can be classified into various types, as 
before. There are type 1 contacts with the cells in column 0; their number is, for column k, 
2+ ((& - L ) )  = 4. There are type 2 contacts with cells in second-neighbour columns. The 
number of vertical walls of the adjacent cells that contact second neighbours is imi - 3i, 
provided that there are no triangular bases, in which case there are 3i edges of the first 
neighbour bases that are not contacted by second neighbours. An example for a cell 0 with 
i = 5 is shown in figure 2(a). The 3i = 15 edges under consideration are the five edges of 
cell 0 plus the 2 x 5 edges connected to the vertices of cell 0. The number of extra edges in 
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each of these walls is, from equations (20) and (13), given by (Le)  = 2 + (It + l)/(i + 1). 
There are contacts of type 3 (with no equivalent in 2D networks) between pairs of adjacent 
columns k, j that are adjacent to each other. The total number of such adjacencies is i 
(the adjacencies marked with a dash in figure 2(a)) and each contributes, on average, with 
nk+nj+2+(l,o) extra faces, where L,o is the uncovered length for the pair k, j ((L,o) =_2 
from equation (20)). Finally, there are two cells adjacent to 0 at the bases, each with Fi 
faces; Fl is given by equation (26). Summing all contributions yields 

But 
columns are equiprobable. The final result is 

nkmf = mi I t  because all distributions of a given set of flk among the neighbour 

(47) 

where we replaced It  by F (equation (45)). This equation is valid for any 3D Poisson 
network with i > 4. For fixed F, the fraction of cells with i bases is defined by f ~ ( i )  
given by (28). Then 

FmF = C f F ( i ) ( ~ m F ) i .  (48) 

We apply these general equations to the two types of 3D laminated Poisson networks 
= 14 previously discussed. For the hexagonal Poisson network i = 6, mi = 6, fs = 1, 

and 

FmF = Y F  + 62. (49) 

Aboav-Weaire law is exact, with (cf equation (3)) 

a = 10/7. 

For the doubly laminated Poisson network mi is given by (44), and 

(FmF)i F 

F m F  was calculated from (48), (47), (28) and (33) for F in the interval [6,250]. Equation (4) 
is verified. The results are plotted in figure 7. It is clear that Aboav-Weaire law is only 
approximate. It is apparently exact in the limit of very large F. The best lit straight line 
can be calculated for a given interval of F and two values of a can be derived from it (see 
equation (3)). For the interval [6, Fm,l the two values of a (as from the slope, from 
the intersection) are as follows: F,, = 20, as = 2.10, a0 = 1.84; F& = 60, as = 0.16, 
ao = 0.68; Fmax = 100, as = 0.94, ao = 2.34. The value of a is therefore strongly 
dependent on the interval of F to which equation (3) is fitted. A better approximate fitting 
relation for F in the interval [6,250] is 

9822.0 
F + 30.73 

FmF =337.30+ 11.37F - 

which gives a maximum error of - 2.5%. No special meaning should be given to 
equation (51); other approximate, eventually more complicated, relations between FmF 
and F could be used. 
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Figure 7. Plots of F ~ F  as a function of F for the 30 doubly laminated Poisson network. (a) 
For F c 60. @) For F < 200. The plat tends to a straight line at large F but deviates at low 
F. The Aboav-Weaire law is not exact. 

5. Summary 

New types of ZD and 3D random networks (with, respectively, trivalent and tetravalent 
vertices) were defined and analysed for various topological and geometrical properties, with 
particular emphasis on the applicability of the Aboav-Weaire and Lewis laws. The networks 
are of a columnar nature, similar to those shown by some natural cellular materials, such 
as cork, which are formed by prismatic cells arranged in parallel columns with staggered 
bases (Natividade 1938, Dormer, 1980). The cells in a column are obtained by a partition 
(or lamination) which, in the networks analysed, is based on Poisson distributions of given 
density (Poisson laminated networks). Other laminated networks can be constructed, based 
on other point distributions (e.g. distributions leading to equiprobable segment lengths in a 
given interval), eventually with different densities in different columns. 

Each Poisson laminated network was analysed for the distribution of the number of 
topological elements (edges and faces, respectively in 2D and 3D networks), for the average 
size (area, volume) of cells with fixed number of elements (to test Lewis law) and for the 
quantities mi and m p  related to the neighbour correlations (to test Aboav-Weaire law). The 
2D Poisson laminated network is remarkable in that both the Lewis and Aboav-Weaire laws 
(with a = 4/3) are exactly followed. This is, to our knowledge, the first example of a 2D 
network with an infinite interval of i in which these laws are obeyed exactly. 

The 3D laminated networks all have k: = 14, no matter on which ZD network they are 
based. The two laws are exact when the ZD base network is the hexagonal network, the 
parameter a in equation (3) being a = 10/7. When the base network is the zD Poisson 
laminated network, both laws are only approximate, but seem to be exact in the limit of 
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large number of topological elements. In such cases, the parameter a in Aboav-Weaire 
equation (3) depends on the interval of F to which the equation is fitted and no special 
significance should be attributed to it. 
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Appendix 

The following identities, valid for any a in [OJ], were used in the calculations of various 
sums: 
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